login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335997
Triangle read by rows: T(n,k) = Product_{i=n-k+1..n} i! for 0 <= k <= n.
0
1, 1, 1, 1, 2, 2, 1, 6, 12, 12, 1, 24, 144, 288, 288, 1, 120, 2880, 17280, 34560, 34560, 1, 720, 86400, 2073600, 12441600, 24883200, 24883200, 1, 5040, 3628800, 435456000, 10450944000, 62705664000, 125411328000, 125411328000
OFFSET
0,5
COMMENTS
Based on some integer sequence a(n), n>0, define triangular arrays A(a;n,k) by recurrence: A(a;0,0) = 1, and A(a;i,j) = 0 if j<0 or j>i, and A(a;n,k) = n! / (n-k)! * A(a;n-1,k) + a(n) * A(a;n-1,k-1) for 0<=k<=n. Then, Product_{i=1..n} (1 + (a(i) / i!) * x) = Sum_{k=0..n} A(a;n,k) / T(n,k) * x^k for n>=0 with empty product 1 (case n=0).
For the row reversed triangle R(n,k) = Product_{i=k+1..n} i! with empty product 1 (case k=n) the terms of the matrix inverse M are given by M(n,n) = 1 for n >= 0 and M(n,n-1) = -n! for n > 0 otherwise 0. - Werner Schulte, Oct 25 2022
FORMULA
T(n,k) = T(n,1) * T(n-1,k-1) for 0 < k <= n.
T(2*n,n) = A093002(n+1) for n >= 0.
T(n,k)/T(k,k) = A009963(n,k) for 0 <= k <= n.
(Sum_{k=0..n} T(n,k) * T(n,n-k))/T(n,n) = A193520(n) for n >= 0.
EXAMPLE
The triangle starts:
n\k : 0 1 2 3 4 5 6
============================================================
0 : 1
1 : 1 1
2 : 1 2 2
3 : 1 6 12 12
4 : 1 24 144 288 288
5 : 1 120 2880 17280 34560 34560
6 : 1 720 86400 2073600 12441600 24883200 24883200
etc.
MATHEMATICA
T[n_, k_] := Product[i!, {i, n - k + 1, n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 08 2020 *)
CROSSREFS
Cf. A000012 (col_0), A000142 (col_1), A010790 (col_2), A176037 (col_3), A000178 (main diagonal and first subdiagonal).
Row sums equal A051399(n+1).
Sequence in context: A020824 A362708 A138678 * A350297 A181731 A278792
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Jul 08 2020
STATUS
approved