login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155839
A ratio of two Catalan arrays.
2
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 4, 7, 6, 0, 1, 0, 8, 18, 16, 10, 0, 1, 0, 16, 45, 51, 30, 15, 0, 1, 0, 32, 110, 152, 115, 50, 21, 0, 1, 0, 64, 264, 436, 396, 225, 77, 28, 0, 1, 0, 128, 624, 1212, 1300, 876, 399, 112, 36, 0, 1
OFFSET
0,12
FORMULA
T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(j+1, n-j)*binomial(j, k)*A000108(j-k).
Sum_{k=0..n} T(n, k) = A120010(n+1).
Equals A033184^{-1}*A124644.
EXAMPLE
Triangle begins
1;
0, 1;
0, 0, 1;
0, 1, 0, 1;
0, 2, 3, 0, 1;
0, 4, 7, 6, 0, 1;
0, 8, 18, 16, 10, 0, 1;
0, 16, 45, 51, 30, 15, 0, 1;
0, 32, 110, 152, 115, 50, 21, 0, 1;
MATHEMATICA
T[n_, k_] = Sum[(-1)^j*Binomial[n-j, k]*Binomial[n-j+1, j]*CatalanNumber[n-k-j], {j, 0, n-k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 04 2021 *)
PROG
(Magma)
A155839:= func< n, k | (&+[(-1)^(n-j)*Binomial(j+1, n-j)*Binomial(j, k)*Catalan(j-k) : j in [k..n]]) >;
[A155839(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
(Sage)
def A155839(n, k): return sum( (-1)^j*binomial(n-j, k)*binomial(n-j+1, j)*catalan_number(n-k-j) for j in (0..n-k))
flatten([[A155839(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
CROSSREFS
Cf. A000108, A033184, A120010 (row sums), A124644.
Sequence in context: A357712 A298159 A123735 * A229615 A359177 A135814
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 28 2009
STATUS
approved