login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123735
zero centered pentadiagonal matrices as a triangular sequence of Characteristic polynomials: Matrix model: M4={{0, -1, -1, 0}, {-1, 0, -1, -1}, {-1, -1, 0, -1}, {0, -1, -1, 0}}.
0
0, 0, -1, -1, 0, 1, -2, 3, 0, -1, 0, 4, -5, 0, 1, 2, -3, -6, 7, 0, -1, 3, -12, 10, 8, -9, 0, 1, 0, -9, 30, -21, -10, 11, 0, -1, -3, 12, 11, -56, 36, 12, -13, 0, 1, -4, 30, -60, -1, 90, -55, -14, 15, 0, -1, 0, 16, -100, 168, -29, -132, 78, 16, -17, 0, 1
OFFSET
1,7
COMMENTS
Pentadiagonals give cycles in the graphs. Absolute value of the Row sum is new as well: Table[Sum[Abs[a[[n]][[m]]], {m, 1, n}], {n, 1, Length[a]}] {0, 1, 2, 6, 10, 19, 43, 82, 144, 270, 557}
FORMULA
m(n,m,d)=If[ n == m, 0, If[n == m - 1 || n ==m + 1, -1, If[n == m - 2 || n == m + 2, -1, 0]]]
EXAMPLE
Triangular sequence:
{0},
{0, -1},
{-1, 0, 1},
{-2, 3, 0, -1},
{0, 4, -5, 0, 1},
{2, -3, -6, 7, 0, -1},
{3, -12, 10, 8, -9, 0, 1},
{0, -9, 30, -21, -10, 11, 0, -1},
{-3, 12, 11, -56, 36, 12, -13, 0, 1},
{-4, 30, -60, -1, 90, -55, -14, 15, 0, -1},
{0, 16, -100, 168, -29, -132, 78, 16, -17, 0, 1}
MATHEMATICA
T[n_, m_, d_] := If[ n == m, 0, If[n == m - 1 || n == m + 1, -1, If[n == m - 2 || n == m + 2, -1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a]
CROSSREFS
Sequence in context: A357720 A357712 A298159 * A155839 A229615 A359177
KEYWORD
uned,sign
AUTHOR
STATUS
approved