|
|
A123738
|
|
Partial sums of (-1)^floor(n*Pi).
|
|
4
|
|
|
-1, 0, -1, 0, -1, 0, -1, -2, -1, -2, -1, -2, -1, -2, -3, -2, -3, -2, -3, -2, -3, -4, -3, -4, -3, -4, -3, -4, -5, -4, -5, -4, -5, -4, -5, -6, -5, -6, -5, -6, -5, -6, -7, -6, -7, -6, -7, -6, -7, -8, -7, -8, -7, -8, -7, -8, -9, -8, -9, -8, -9, -8, -9, -10, -9, -10, -9, -10, -9, -10, -11, -10, -11, -10, -11, -10, -11, -12, -11, -12
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
LINKS
|
Kevin O'Bryant, Bruce Reznick and Monika Serbinowska, Almost alternating sums, arXiv:math/0308087 [math.NT], 2003-2005.
Kevin O'Bryant, Bruce Reznick and Monika Serbinowska, Almost alternating sums, Amer. Math. Monthly, Vol. 113 (October 2006), 673-688.
|
|
MATHEMATICA
|
Rest[FoldList[Plus, 0, (-1)^Floor[Pi*Range[120]]]]
|
|
PROG
|
(PARI) vector(130, n, sum(j=1, n, (-1)^(j\(1/Pi))) ) \\ G. C. Greubel, Sep 05 2019
(Magma) R:= RealField(20); [&+[(-1)^Floor(j*Pi(R)): j in [1..n]]: n in [1..130]]; // G. C. Greubel, Sep 05 2019
(Sage) [sum((-1)^floor(j*pi) for j in (1..n)) for n in (1..130)] # G. C. Greubel, Sep 05 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|