login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175835
Number of real roots of the polynomial Sum_{k=0..n-1} A001620(1+k-n)*x^k, whose coefficients are the decimal digits of the Euler-Mascheroni constant.
1
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 0, 3, 0, 3, 4, 1, 4, 1, 0, 1
OFFSET
1,11
COMMENTS
a(n) = number of real zeros of the polynomial P(n,x) = Sum_{k=0..n-1} g(k) x^k, where g(k) are the digits of the decimal expansion of floor(gamma*10^n), g(k)=A001620(k-n).
EXAMPLE
a(4)=1 because 5772 = A139260(4) => P(4,x) = 2 + 7x + 7x^2 + 5x^3 has 1 real root near -0.4.
MAPLE
A139260 := proc(n) floor(gamma*10^n) ; end proc:
A175835 := proc(n) local edgs ; edgs := convert(A139260(n), base, 10) ; add(op(i, edgs)*x^(i-1), i=1..nops(edgs)) ; [fsolve(%, x, real)] ; nops(%) ; end proc:
seq(A175835(n), n=1..20) ; # R. J. Mathar, Dec 11 2010
CROSSREFS
Sequence in context: A355402 A275344 A206826 * A123738 A194511 A214526
KEYWORD
nonn,base,less
AUTHOR
Michel Lagneau, Dec 05 2010
STATUS
approved