login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173667
Number of real zeros of the polynomial whose coefficients are the decimal expansion of n.
7
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0
OFFSET
1,100
COMMENTS
From the example a(121)=2, P(121,x)=(x+1)^2, it is seen that the roots are counted with multiplicity. For n=0, the polynomial would be P=0 with infinitely many real roots. - M. F. Hasler, Nov 24 2010
a(n) is the number of real zeros of the polynomial P(n,x) = Sum_{k=0..p} d(k)
x^k where d(k) are the digits of the decimal expansion of n = d(p) d(p-1)...d(0), n =0,1,2,...
EXAMPLE
a(121) = 2 because 1+2x+x^2 = 0 has 2 real roots.
a(1597200)=6 because x^6 + 5x^5 + 9x^4+7x^3+2x^2 = x^2 (x+2)(x+1)^3 has 6 real roots.
MAPLE
with(numtheory):T:=array(1..10000000): x2:=0: printf(`%d, `, x2):for n from
1 to 300 do: for i from 1 to 8 do: T[i]:=0:od: l:=length(n) : n0:=n:for m from
1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :u: T[m]:=u:od:x:=fsolve(T[1]+
T[2]*z + T[3]*z^2+ T[4]*z^3+ T[5]*z^4 + T[6]*z^5 + T[7]*z^6 + T[8]*z^7, z, real):x1:=[x]: x2:=nops(x1): printf(`%d, `, x2):od:
PROG
(PARI) A173667(n)=sum(k=1, #n=factor(1.*Pol(eval(Vec(Str(n)))))~, (poldegree(n[1, k])==1)*n[2, k] ) /* factorization over the reals => linear factor for each root. poldegree()==1 could be replaced by poldisc()>=0 */ \\ M. F. Hasler, Nov 25 2010
CROSSREFS
Sequence in context: A292241 A352727 A332015 * A241541 A086008 A083910
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Nov 24 2010
STATUS
approved