login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175838 Let rho(n) be the first positive root of Bessel function J_n(x). This sequence is decimal expansion of derivative rho'(0)=1.54288974... 0
1, 5, 4, 2, 8, 8, 9, 7, 4, 2, 5, 9, 9, 3, 1, 3, 6, 8, 8, 0, 7, 0, 3, 2, 1, 4, 2, 1, 4, 7, 1, 4, 3, 5, 5, 6, 1, 6, 9, 8, 4, 6, 0, 7, 8, 7, 3, 5, 0, 1, 9, 7, 5, 8, 9, 3, 5, 2, 5, 2, 9, 4, 4, 1, 0, 2, 6, 8, 2, 5, 6, 4, 6, 9, 7, 2, 9, 1, 1, 2, 6, 0, 5, 0, 2, 3, 8, 2, 7, 4, 6, 7, 3, 8, 1, 0, 4, 7, 5, 6, 6, 1, 5, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..105.

MAPLE

From R. J. Mathar, Sep 22 2010: (Start)

Digits := 120 : Jnudnu := proc(nu, z, kmax) -add( (-1)^k*Psi(nu+k+1)/GAMMA(nu+k+1)*(z/2)^(2*k+nu)/k! , k=0..kmax) ; evalf(%) ; end proc:

Jprime := diff(BesselJ(0, x), x) ; z := evalf(BesselJZeros(0, 1)) ; denomin := subs(x=z, Jprime) ;

for kmax from 30 to 70 by 10 do numerat := Jnudnu(0, z, kmax) ; c := evalf(-numerat/denomin) ; print(c) ; end do: # Abramowitz-Stegun 9.1.64

(End)

MATHEMATICA

N[(Pi BesselY[0, BesselJZero[0, 1]])/(2 BesselJ[1, BesselJZero[0, 1]]), 200]

CROSSREFS

Cf. A115368. - R. J. Mathar, Sep 22 2010

Sequence in context: A180131 A257972 A222307 * A347272 A097960 A019712

Adjacent sequences:  A175835 A175836 A175837 * A175839 A175840 A175841

KEYWORD

cons,nonn

AUTHOR

Vladimir Reshetnikov, Sep 19 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 18:35 EDT 2022. Contains 353847 sequences. (Running on oeis4.)