login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A ratio of two Catalan arrays.
2

%I #8 Sep 08 2022 08:45:41

%S 1,0,1,0,0,1,0,1,0,1,0,2,3,0,1,0,4,7,6,0,1,0,8,18,16,10,0,1,0,16,45,

%T 51,30,15,0,1,0,32,110,152,115,50,21,0,1,0,64,264,436,396,225,77,28,0,

%U 1,0,128,624,1212,1300,876,399,112,36,0,1

%N A ratio of two Catalan arrays.

%H G. C. Greubel, <a href="/A155839/b155839.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(j+1, n-j)*binomial(j, k)*A000108(j-k).

%F Sum_{k=0..n} T(n, k) = A120010(n+1).

%F Equals A033184^{-1}*A124644.

%e Triangle begins

%e 1;

%e 0, 1;

%e 0, 0, 1;

%e 0, 1, 0, 1;

%e 0, 2, 3, 0, 1;

%e 0, 4, 7, 6, 0, 1;

%e 0, 8, 18, 16, 10, 0, 1;

%e 0, 16, 45, 51, 30, 15, 0, 1;

%e 0, 32, 110, 152, 115, 50, 21, 0, 1;

%t T[n_, k_] = Sum[(-1)^j*Binomial[n-j, k]*Binomial[n-j+1, j]*CatalanNumber[n-k-j], {j, 0, n-k}];

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jun 04 2021 *)

%o (Magma)

%o A155839:= func< n,k | (&+[(-1)^(n-j)*Binomial(j+1, n-j)*Binomial(j, k)*Catalan(j-k) : j in [k..n]]) >;

%o [A155839(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 04 2021

%o (Sage)

%o def A155839(n,k): return sum( (-1)^j*binomial(n-j,k)*binomial(n-j+1,j)*catalan_number(n-k-j) for j in (0..n-k))

%o flatten([[A155839(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 04 2021

%Y Cf. A000108, A033184, A120010 (row sums), A124644.

%K easy,nonn,tabl

%O 0,12

%A _Paul Barry_, Jan 28 2009