login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A262539
a(n) = coefficient of x^n in the expansion of Product_{k>=1} (1-x^k)^(3*n).
2
1, -3, 9, -12, -99, 1107, -7038, 33345, -113643, 151593, 1547469, -17376120, 112734378, -544200660, 1884830229, -2551628817, -26299018683, 298555990425, -1956243650733, 9538198578972, -33464928293199, 47571625958796, 452674080810576, -5260288747038957, 34841458485708282, -171603777320158968
OFFSET
0,2
MAPLE
C3:=proc(k) local t1, n;
t1:=mul((1-x^n)^(3*k), n=1..k+2);
series(t1, x, k+1);
coeff(%, x, k);
end;
[seq(C3(i), i=0..30)];
CROSSREFS
Bisections: A262540, A262541.
Sequence in context: A029524 A357726 A045769 * A101537 A070353 A029458
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Oct 04 2015
STATUS
approved