Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jan 31 2024 04:05:35
%S 1,0,-3,-9,-12,45,465,2394,7827,639,-250410,-2588553,-17773635,
%T -84525480,-105849399,3569654115,56100280308,561682625769,
%U 4227837863181,20472943653306,-38990802816489,-2621206974761253,-42512769453705474,-495174030273565173
%N Expansion of e.g.f. cos( sqrt(3) * (exp(x) - 1) ).
%H Andrew Howroyd, <a href="/A357726/b357726.txt">Table of n, a(n) for n = 0..200</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>.
%F a(n) = Sum_{k=0..floor(n/2)} (-3)^k * Stirling2(n,2*k).
%F a(n) = 1; a(n) = -3 * Sum_{k=0..n-1} binomial(n-1, k) * A357737(k).
%F a(n) = ( Bell_n(sqrt(3) * i) + Bell_n(-sqrt(3) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.
%t With[{nn=30},CoefficientList[Series[Cos[Sqrt[3](Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jun 20 2023 *)
%o (PARI) my(N=30, x='x+O('x^N)); apply(round, Vec(serlaplace(cos(sqrt(3)*(exp(x)-1)))))
%o (PARI) a(n) = sum(k=0, n\2, (-3)^k*stirling(n, 2*k, 2));
%o (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
%o a(n) = round((Bell_poly(n, sqrt(3)*I)+Bell_poly(n, -sqrt(3)*I)))/2;
%Y Column k=3 of A357728.
%Y Cf. A357615, A357737.
%K sign
%O 0,3
%A _Seiichi Manyama_, Oct 10 2022