login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360197
Number of induced cycles in the 4 X n grid graph.
2
0, 3, 9, 24, 58, 125, 251, 490, 948, 1823, 3485, 6636, 12614, 23961, 45495, 86350, 163856, 310899, 589873, 1119144, 2123266, 4028261, 7642379, 14499018, 27507300, 52186343, 99006909, 187833924, 356354718, 676068905, 1282624071, 2433368030, 4616535768
OFFSET
1,2
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) - a(n-5) + a(n-6) for n > 6.
G.f.: x^2*(3 - 3*x + 6*x^2 + x^3 - 2*x^4)/((1 - x)^2*(1 - 2*x + x^2 - x^3 - x^4)).
EXAMPLE
The a(3) = 9 chordless cycles consist of six 1 X 1 squares (covering 4 vertices), four 2 X 2 squares and one 2 X 3 rectangle.
The a(4) = 24 solutions for the 4 X 4 grid include:
O O O O . O O O O O O O
O . . O O O . O O . . O
O . O O O . O O O . . O
O O O . O O O . O O O O
MATHEMATICA
LinearRecurrence[{4, -6, 5, -2, -1, 1}, {0, 3, 9, 24, 58, 125}, 50] (* Paolo Xausa, Jun 24 2024 *)
PROG
(PARI) seq(n) = Vec(x*(3 - 3*x + 6*x^2 + x^3 - 2*x^4)/((1 - x)^2*(1 - 2*x + x^2 - x^3 - x^4)) + O(x^n), -n)
CROSSREFS
Row 4 of A360196.
Sequence in context: A291706 A089830 A258111 * A109175 A120539 A357718
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Jan 29 2023
STATUS
approved