login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089830
Expansion of (1-3*x+6*x^2-5*x^3+3*x^4-x^5)/(1-x)^6.
0
1, 3, 9, 24, 57, 122, 239, 435, 745, 1213, 1893, 2850, 4161, 5916, 8219, 11189, 14961, 19687, 25537, 32700, 41385, 51822, 64263, 78983, 96281, 116481, 139933, 167014, 198129, 233712, 274227, 320169, 372065, 430475, 495993, 569248, 650905, 741666, 842271
OFFSET
0,2
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter ..., arXiv:math/0112281 [math.CO], 2001.
A. Burstein and T. Mansour, Words restricted by 3-letter ..., Annals. Combin., 7 (2003), 1-14; see Example 3.5.
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
Sergey Kitaev, J. B. Remmel, A note on p-Ascent Sequences, Preprint, 2016.
FORMULA
a(0)=1, a(1)=3, a(2)=9, a(3)=24, a(4)=57, a(5)=122, a(n)=6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). -Harvey P. Dale, Jul 18 2012
a(n) = 13*n/15+1+n^3/8+11*n^2/12+n^5/120+n^4/12. - R. J. Mathar, Sep 27 2014
MATHEMATICA
CoefficientList[Series[(1-3x+6x^2-5x^3+3x^4-x^5)/(1-x)^6, {x, 0, 40}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 3, 9, 24, 57, 122}, 40] (* Harvey P. Dale, Jul 18 2012 *)
PROG
(Magma) I:=[1, 3, 9, 24, 57, 122]; [n le 6 select I[n] else 6*Self(n-1)- 15*Self(n-2)+ 20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Nov 19 2015
CROSSREFS
Sequence in context: A085739 A245762 A291706 * A258111 A360197 A109175
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 18 2004
STATUS
approved