login
A099923
Fourth powers of Lucas numbers A000032.
6
16, 1, 81, 256, 2401, 14641, 104976, 707281, 4879681, 33362176, 228886641, 1568239201, 10750371856, 73680216481, 505022001201, 3461445366016, 23725169980801, 162614549665681, 1114577187760656, 7639424429247601
OFFSET
0,1
REFERENCES
Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 56.
LINKS
Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
Pridon Davlianidze, Problem B-1270, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 2 (2020), p. 179; Four Telescopic Infinite Products, Solution to Problem B-1270 by Jason L. Smith, ibid., Vol. 59, No. 2 (2021), pp. 183-184.
Toufik Mansour, A formula for the generating functions of powers of Horadam's sequence, Australas. J. Combin. 30 (2004) 207-212.
FORMULA
a(n) = A000032(n)^4 = A001254(n)^2.
a(n) = L(4*n) + 4*(-1)^n*L(2*n) + 6.
a(n) = L(n-2)*L(n-1)*L(n+1)*L(n+2) + 25, for n >=1.
G.f.: (16-79*x-164*x^2+76*x^3+x^4)/((1-x)*(1+3*x+x^2)*(1-7*x+x^2)). [See Mansour p. 207] - R. J. Mathar, Oct 26 2008
a(0)=16, a(1)=1, a(2)=81, a(3)=256, a(4)=2401, a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Jul 04 2014
Sum_{i=0..n} a(i) = 11 + 6*n + 4*(-1)^n*F(2*n+1) + F(4*n+2), for F = A000045. - Adam Mohamed and Greg Dresden, Jul 02 2024
Product_{n>=2} (1 - 25/a(n)) = phi^5/18, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 04 2024
MATHEMATICA
LucasL[Range[0, 20]]^4 (* or *) LinearRecurrence[{5, 15, -15, -5, 1}, {16, 1, 81, 256, 2401}, 21] (* Harvey P. Dale, Jul 04 2014 *)
CoefficientList[Series[(16 - 79 x - 164 x^2 + 76 x^3 + x^4)/((1 - x) (1 + 3*x+x^2)*(1-7*x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
PROG
(Magma) [ Lucas(n)^4 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011
(PARI) for(n=0, 30, print1( (fibonacci(n+1) + fibonacci(n-1))^4, ", ")) \\ G. C. Greubel, Dec 21 2017
(PARI) x='x+O('x^30); Vec((16-79*x-164*x^2+76*x^3+x^4)/((1-x)*(1+3*x+x^2)*(1-7*x+x^2))) \\ G. C. Greubel, Dec 21 2017
CROSSREFS
Fourth row of array A103324.
Sequence in context: A329927 A036179 A309132 * A351244 A105671 A145828
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Nov 01 2004
STATUS
approved