login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059950
Number of 9-block bicoverings of an n-set.
2
0, 0, 0, 0, 0, 15, 8456, 954213, 66253552, 3622342095, 172672602432, 7557346901841, 312733696544984, 12456923582109435, 483124650731622328, 18383758048494864909, 689931203330381971296, 25630900118611348761735, 945025181750878420241744, 34647077709586498046291817
OFFSET
1,6
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
LINKS
FORMULA
a(n)=(1/9!)*(36^n -9*28^n -36*22^n +72*21^n +252*16^n -336*15^n +378*12^n -1512*11^n +1260*10^n -1890*8^n +5040*7^n -4536*6^n +7560*5^n -8820*4^n -11256*3^n +28728*2^n -19152).
E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
G.f.: x^6*(69766476595200*x^11 -73112128911360*x^10 +31807557729984*x^9 -7437208397056*x^8 +993276127572*x^7 -70229555428*x^6 +1198328731*x^5 +199609307*x^4 -16366808*x^3 +505224*x^2 -5351*x -15) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(11*x -1)*(12*x -1)*(15*x -1)*(16*x -1)*(21*x -1)*(22*x -1)*(28*x -1)*(36*x -1)). - Colin Barker, Jul 09 2013
CROSSREFS
Column k=9 of A059443.
Cf. A002718.
Sequence in context: A334835 A206295 A074488 * A198979 A249967 A308156
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 14 2001
STATUS
approved