login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133941
E.g.f. satisfies: A(x) = x*(exp(tan(A(x)))).
2
0, 1, 2, 9, 72, 825, 12192, 220353, 4708480, 116116497, 3245839360, 101415497689, 3502465714176, 132486192976137, 5447446920323072, 241907419042038225, 11538444129924055040, 588321821566662253729, 31932991994214557417472
OFFSET
0,3
LINKS
FORMULA
a(n) = sum(k=1..n-1, (n^k*((-1)^(n-k-1)+1)*sum(j=k..n-1, C(j-1,k-1)*j!*2^(n-j-2) * (-1)^((n+k-1)/2+j)*stirling2(n-1,j),j,k,n-1))/k!) n>1. a(1)=1. - Vladimir Kruchinin, May 10 2011
a(n) ~ n^(n-1) * s / (exp(n) * r^n * sqrt(1+sin(2*s))), where r = 0.3039707088650079908... and s = 0.6417143708728826584... are roots of the system of equations exp(tan(s))*r = s, s = (cos(s))^2. - Vaclav Kotesovec, Jul 16 2014
MAPLE
A:= proc(n) option remember; if n=0 then 0 else convert (series (x* (exp (tan(A(n-1)))), x=0, n+1), polynom) fi end: a:= n-> coeff (A(n), x, n)*n!: seq (a(n), n=0..22);
MATHEMATICA
CoefficientList[InverseSeries[Series[x/E^Tan[x], {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 16 2014 *)
PROG
(Maxima) a(n):=if n<2 then n else sum((n^k*((-1)^(n-k-1)+1)*sum(binomial(j-1, k-1)*j!*2^(n-j-2)*(-1)^((n+k-1)/2+j)*stirling2(n-1, j), j, k, n-1))/k!, k, 1, n-1) [Vladimir Kruchinin, May 10 2011]
CROSSREFS
Sequence in context: A349583 A370889 A367485 * A240956 A038035 A133984
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved