login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133944
Sum mu(k), where the sum is over the integers k which are the "non-isolated divisors" of n and mu(k) is the Moebius function (mu(k) = A008683(k)). A positive divisor, k, of n is non-isolated if (k-1) or (k+1) also divides n.
2
0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0
OFFSET
1,132
LINKS
FORMULA
A133943(n) = -a(n), for n >= 2.
MAPLE
A133944 := proc(n) local divs, k, i, a ; divs := convert(numtheory[divisors](n), list) ; a := 0 ; for i from 1 to nops(divs) do k := op(i, divs) ; if k-1 in divs or k+1 in divs then a := a+numtheory[mobius](k) ; fi ; od: RETURN(a) ; end: seq(A133944(n), n=1..120) ; # R. J. Mathar, Oct 21 2007
PROG
(PARI) A133944(n) = sumdiv(n, d, (!if((1==d), (n%2), (n%(d-1))&&(n%(d+1))))*moebius(d)); \\ Antti Karttunen, Sep 02 2018
CROSSREFS
Cf. A133943.
Sequence in context: A172051 A093958 A044936 * A210455 A294936 A378539
KEYWORD
sign
AUTHOR
Leroy Quet, Sep 30 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 21 2007
STATUS
approved