login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A133946
a(n) = Sum phi(k), where the sum is over the integers k which are the "non-isolated divisors" of 2n and phi(k) is the Euler totient function (phi(k) = A000010(k)). A positive divisor k of n is non-isolated if k-1 and/ or k+1 also divides n.
2
2, 2, 4, 2, 2, 6, 2, 2, 4, 8, 2, 6, 2, 2, 10, 2, 2, 6, 2, 8, 12, 2, 2, 6, 2, 2, 4, 12, 2, 12, 2, 2, 4, 2, 2, 16, 2, 2, 4, 8, 2, 14, 2, 2, 20, 2, 2, 6, 2, 8, 4, 2, 2, 6, 16, 12, 4, 2, 2, 12, 2, 2, 12, 2, 2, 20, 2, 2, 4, 8, 2, 16, 2, 2, 10, 2, 2, 22, 2, 8, 4, 2, 2, 18, 2, 2, 4, 2, 2, 22, 20, 2, 4, 2, 2, 6, 2
OFFSET
1,1
COMMENTS
No odd integer has any non-isolated divisors.
a(n) = 2n - A133945(2n).
LINKS
FORMULA
(PARI) A133946(n) = { n = 2*n; sumdiv(n,d,if((d>1 && !(n%(d-1))) || !(n%(d+1)), eulerphi(d))); }; \\ Antti Karttunen, Jan 15 2025
MATHEMATICA
Table[Plus @@ EulerPhi[Select[Divisors[2n], If[ # > 1, IntegerQ[2n/(# - 1)]] || IntegerQ[2n/(# + 1)] &]], {n, 1, 80}] (* Stefan Steinerberger, Oct 04 2007 *)
CROSSREFS
Cf. A133945.
Sequence in context: A321320 A366808 A175462 * A286250 A278244 A278542
KEYWORD
nonn,changed
AUTHOR
Leroy Quet, Oct 03 2007
EXTENSIONS
More terms from Stefan Steinerberger, Oct 04 2007
Extended by Ray Chandler, May 28 2008
STATUS
approved