login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A133943
Sum mu(k), where the sum is over the integers k which are the "isolated divisors" of n and mu(k) is the Moebius function (mu(k) = A008683(k)). A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.
2
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0
OFFSET
1,132
COMMENTS
A133943(n) = -A133944(n), for n >= 2.
Is every term either 0 or 1?
No, a(132)=2, a(870)=3, a(8844)=4, a(420)=-1, a(1190)=-2, a(1260)=-3, a(7140)=-4. - Ray Chandler, Jun 25 2008
And a(14280) = -5. - Antti Karttunen, Sep 02 2018
LINKS
MAPLE
A133943 := proc(n) local divs, k, i, a ; divs := convert(numtheory[divisors](n), list); a := 0 ; for i from 1 to nops(divs) do k := op(i, divs) ; if not k-1 in divs and not k+1 in divs then a := a+numtheory[mobius](k); fi ; od: RETURN(a) ; end: seq(A133943(n), n=1..120) ; # R. J. Mathar, Oct 21 2007
MATHEMATICA
a[n_] := MoebiusMu /@ Select[Divisors[n], (# == 1 || Mod[n, #-1] > 0) && Mod[n, #+1] > 0&] // Total;
Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Nov 08 2024 *)
PROG
(PARI) A133943(n) = sumdiv(n, d, (!!if((1==d), (n%2), (n%(d-1))&&(n%(d+1))))*moebius(d)); \\ Antti Karttunen, Sep 02 2018
CROSSREFS
Cf. A133944.
Sequence in context: A348033 A327153 A374197 * A014084 A014159 A361016
KEYWORD
sign
AUTHOR
Leroy Quet, Sep 30 2007, Oct 27 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 21 2007
Secondary offset added by Antti Karttunen, Sep 02 2018
STATUS
approved