login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A348033
Number of unitary divisors d of n such that sigma(d)*d is equal to n.
3
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
OFFSET
1
COMMENTS
Differs from A327153 for the first time at n=72, where a(72)=0, while A327153(72) = 1.
Conjecture: For all terms x > 1 of A019278, a(x) = 0.
Question: Are there any terms larger than 1?
FORMULA
a(n) = Sum_{d|n} [1==gcd(d, n/d) and A000203(d)*d == n], where [ ] is the Iverson bracket.
For all n, a(n) <= A327153(n).
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, CoprimeQ[#, n/#] && #*DivisorSigma[1, #] == n &]; Array[a, 120] (* Amiram Eldar, Sep 27 2021 *)
PROG
(PARI) A348033(n) = sumdiv(n, d, if(1==gcd(d, n/d)&&n==(d*sigma(d)), 1, 0));
CROSSREFS
Cf. A019278, A327153, A348034 (positions of nonzero terms), A348035.
Sequence in context: A205809 A353370 A355940 * A327153 A374197 A133943
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 26 2021
STATUS
approved