login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133987
a(n) = A005704( (3^n + (-1)^n - 2)/4 ), where A005704(n) = number of partitions of 3n into powers of 3.
1
1, 1, 3, 12, 117, 2250, 107352, 12298500, 3613136949, 2742962912055, 5503085134707267, 29497134965411187747, 427365985177386403469028, 16883252883454411208147060304, 1832920589508888783152391724736550
OFFSET
0,3
LINKS
FORMULA
(3^n + (-1)^n - 2)/4 gives the n-th number that has alternating base-3 digits {0,2} (starting with zero).
EXAMPLE
Let b(n) = A005704(n) = number of partitions of 3n into powers of 3, then
the initial terms of this sequence begin:
b(0), b(0), b(2), b(6), b(20), b(60), b(182), b(546), b(1640),...
APPLICATION: SPECIAL TERNARY TREE.
a(n) = number of nodes in generation n of the following tree.
Start at generation 0 with a single root node labeled [1].
From then on, each parent node [k] is attached to k child nodes with
labels congruent to 1(mod 3) for even n, or 3(mod 3) for odd n,
within the range {1..3k}, for generation n >= 0.
The initial generations 0..4 of the tree are as follows;
the path from the root node is given, followed by child nodes in [].
GEN.0: [1];
GEN.1: 1->[3];
GEN.2: 1-3->[1,4,7];
GEN.3:
1-3-1->[3]
1-3-4->[3,6,9,12]
1-3-7->[3,6,9,12,15,18,21];
GEN.4:
1-3-1-3->[1,4,7]
1-3-4-3->[1,4,7]
1-3-4-6->[1,4,7,10,13,16]
1-3-4-9->[1,4,7,10,13,16,19,22,25]
1-3-4-12->[1,4,7,10,13,16,19,22,25,28,31,34]
1-3-7-3->[1,4,7]
1-3-7-6->[1,4,7,10,13,16]
1-3-7-9->[1,4,7,10,13,16,19,22,25]
1-3-7-12->[1,4,7,10,13,16,19,22,25,28,31,34]
1-3-7-15->[1,4,7,10,13,16,19,22,25,28,31,34,37,40,43]
1-3-7-18->[1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52]
1-3-7-21->[1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61] .
Note: the sum of the labels in generation n equals a(n+1) and
the largest term in generation n = (3^(n+1) + (-1)^(n+1) - 2)/4 + 1.
PROG
(PARI) {A005704(n) = if(n<1, n==0, A005704(n\3) + A005704(n-1))} {a(n) = A005704( (3^n + (-1)^n - 2)/4 )}
CROSSREFS
Cf. A005704; variants: A132843, A132880.
Sequence in context: A350410 A009254 A377066 * A359658 A194506 A280458
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 01 2007
STATUS
approved