login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027045
a(n) = Sum_{k=n+1..2*n} T(n, k), T given by A027023.
2
1, 4, 11, 34, 103, 306, 901, 2636, 7685, 22372, 65111, 189590, 552547, 1612154, 4709369, 13773368, 40329465, 118217992, 346891115, 1018872626, 2995250535, 8812601062, 25948130525, 76456539156, 225427875325, 665066293480
OFFSET
1,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if k<3 or k=2*n then 1
else add(T(n-1, k-j), j=1..3)
fi
end:
seq(add(T(n, k), k=n+1..2*n), n=1..30); # G. C. Greubel, Nov 04 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[Sum[T[n, k], {k, n+1, 2*n}], {n, 30}] (* G. C. Greubel, Nov 04 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<3 or k==2*n): return 1
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k) for k in (n+1..2*n)) for n in (1..30)] # G. C. Greubel, Nov 04 2019
(Magma) function T(n, k)
if k lt 3 or k eq 2*n then return 1;
else return (&+[T(n-1, k-j): j in [1..3]]);
end if; return T; end function;
[(&+[T(n, k): k in [n+1..2*n]]): n in [1..15]]; // G. C. Greubel, Nov 20 2019
CROSSREFS
Cf. A027023.
Sequence in context: A144791 A180305 A060925 * A243781 A227329 A006765
KEYWORD
nonn
EXTENSIONS
Offset changed by G. C. Greubel, Nov 04 2019
STATUS
approved