Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:44:49
%S 1,4,11,34,103,306,901,2636,7685,22372,65111,189590,552547,1612154,
%T 4709369,13773368,40329465,118217992,346891115,1018872626,2995250535,
%U 8812601062,25948130525,76456539156,225427875325,665066293480
%N a(n) = Sum_{k=n+1..2*n} T(n, k), T given by A027023.
%H G. C. Greubel, <a href="/A027045/b027045.txt">Table of n, a(n) for n = 1..1000</a>
%p T:= proc(n, k) option remember;
%p if k<3 or k=2*n then 1
%p else add(T(n-1, k-j), j=1..3)
%p fi
%p end:
%p seq(add(T(n, k), k=n+1..2*n), n=1..30); # _G. C. Greubel_, Nov 04 2019
%t T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[T[n,k], {k,n+1,2*n}], {n,30}] (* _G. C. Greubel_, Nov 04 2019 *)
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (k<3 or k==2*n): return 1
%o else: return sum(T(n-1, k-j) for j in (1..3))
%o [sum(T(n, k) for k in (n+1..2*n)) for n in (1..30)] # _G. C. Greubel_, Nov 04 2019
%o (Magma) function T(n,k)
%o if k lt 3 or k eq 2*n then return 1;
%o else return (&+[T(n-1,k-j): j in [1..3]]);
%o end if; return T; end function;
%o [(&+[T(n,k): k in [n+1..2*n]]): n in [1..15]]; // _G. C. Greubel_, Nov 20 2019
%Y Cf. A027023.
%K nonn
%O 1,2
%A _Clark Kimberling_
%E Offset changed by _G. C. Greubel_, Nov 04 2019