login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227329
Number of n X 2 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 3 binary array having two adjacent 1's and two adjacent 0's, with rows and columns of the latter in lexicographically nondecreasing order.
1
4, 11, 34, 104, 285, 683, 1469, 2906, 5383, 9457, 15904, 25780, 40493, 61887, 92339, 134870, 193271, 272245, 377566, 516256, 696781, 929267, 1225737, 1600370, 2069783, 2653337, 3373468, 4256044, 5330749, 6631495, 8196863, 10070574
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/5040)*n^7 + (1/720)*n^6 + (37/720)*n^5 - (1/144)*n^4 + (283/180)*n^3 - (1259/180)*n^2 + (3019/210)*n - 2 for n>2.
Conjectures from Colin Barker, Sep 08 2018: (Start)
G.f.: x*(4 - 21*x + 58*x^2 - 84*x^3 + 69*x^4 - 43*x^5 + 37*x^6 - 30*x^7 + 13*x^8 - 2*x^9) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for x>10.
(End)
EXAMPLE
Some solutions for n=4:
..0..0....0..0....0..0....0..1....0..1....1..0....1..0....0..0....0..0....0..0
..0..1....0..0....1..1....1..0....0..0....0..0....1..0....0..0....1..1....0..1
..0..0....1..1....0..1....1..0....0..0....1..1....0..1....0..0....1..1....0..0
..1..1....1..0....0..1....0..0....0..0....1..1....0..1....1..0....0..0....0..0
CROSSREFS
Column 2 of A227333.
Sequence in context: A060925 A027045 A243781 * A006765 A151272 A112272
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 07 2013
STATUS
approved