login
A151272
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (0, -1), (1, -1), (1, 1)}.
0
1, 1, 4, 11, 34, 112, 376, 1257, 4330, 15068, 52570, 185086, 657128, 2339972, 8366910, 30070119, 108400594, 391749772, 1420203840, 5161860950, 18797194292, 68593029228, 250803101058, 918497353314, 3368841454202, 12375002551280, 45518663980004, 167631635849400, 618071950062304, 2281410957097608
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A243781 A227329 A006765 * A112272 A149234 A149235
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved