login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320650
Expansion of 1/(1 - Sum_{k>=1} x^k/(1 - x^(2*k))).
3
1, 1, 2, 5, 10, 22, 48, 103, 222, 481, 1038, 2241, 4842, 10456, 22582, 48776, 105342, 227514, 491386, 1061281, 2292132, 4950510, 10692006, 23092378, 49874474, 107717891, 232646956, 502466304, 1085216744, 2343829586, 5062156694, 10933145610, 23613191032
OFFSET
0,3
COMMENTS
Invert transform of A001227.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)/2)/(1 - x^k)).
G.f.: 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1)))).
a(0) = 1; a(n) = Sum_{k=1..n} A001227(k)*a(n-k).
MAPLE
a:=series(1/(1-add(x^k/(1-x^(2*k)), k=1..100)), x=0, 33): seq(coeff(a, x, n), n=0..32); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^k/(1 - x^(2 k)), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 18 2018
STATUS
approved