login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - Sum_{k>=1} k*x^k/(1 + x^k)).
2

%I #6 Apr 02 2019 05:52:44

%S 1,1,2,7,14,36,90,213,520,1271,3082,7493,18238,44324,107782,262142,

%T 637368,1549870,3768886,9164499,22285034,54190024,131771616,320424614,

%U 779166270,1894671121,4607207304,11203190618,27242414612,66244451632,161084380040,391703392954

%N Expansion of 1/(1 - Sum_{k>=1} k*x^k/(1 + x^k)).

%C Invert transform of A000593.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k))).

%F G.f.: 24/(25 - theta_2(x)^4 - theta_3(x)^4), where theta_() is the Jacobi theta function.

%F a(0) = 1; a(n) = Sum_{k=1..n} A000593(k)*a(n-k).

%p a:=series(1/(1-add(k*x^k/(1+x^k),k=1..100)),x=0,32): seq(coeff(a,x,n),n=0..31); # _Paolo P. Lava_, Apr 02 2019

%t nmax = 31; CoefficientList[Series[1/(1 - Sum[k x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

%t nmax = 31; CoefficientList[Series[24/(25 - EllipticTheta[2, 0, x]^4 - EllipticTheta[3, 0, x]^4), {x, 0, nmax}], x]

%t a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 31}]

%Y Cf. A000009, A000593, A180305, A320650.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Oct 18 2018