login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307060
Expansion of 1/(2 - Product_{k>=1} 1/(1 + x^k)).
6
1, -1, 1, -2, 4, -7, 12, -21, 38, -68, 120, -212, 377, -670, 1188, -2107, 3740, -6638, 11778, -20898, 37084, -65808, 116775, -207212, 367696, -652478, 1157815, -2054524, 3645730, -6469316, 11479734, -20370656, 36147506, -64143372, 113821732, -201975429, 358403220, -635982680, 1128544452, -2002589998
OFFSET
0,4
COMMENTS
Invert transform of A081362.
LINKS
FORMULA
G.f.: 1/(2 - Product_{k>=1} (1 - x^(2*k-1))).
a(0) = 1; a(n) = Sum_{k=1..n} A081362(k)*a(n-k).
From G. C. Greubel, Jan 24 2024: (Start)
G.f.: 1/(2 - QPochhammer(x)/QPochhammer(x^2)}.
G.f.: 1/(2 - x^(1/24)*eta(x)/eta(x^2)), where eta(x) is the Dedekind eta function. (End)
MATHEMATICA
nmax = 39; CoefficientList[Series[1/(2 - Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(Magma)
m:=80;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[1-x^(2*j-1): j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
(SageMath)
m=80;
def f(x): return 1/( 2 - product(1-x^(2*j-1) for j in range(1, m+3)) )
def A307060_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307060_list(m) # G. C. Greubel, Jan 24 2024
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Mar 21 2019
STATUS
approved