The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307060 Expansion of 1/(2 - Product_{k>=1} 1/(1 + x^k)). 6
 1, -1, 1, -2, 4, -7, 12, -21, 38, -68, 120, -212, 377, -670, 1188, -2107, 3740, -6638, 11778, -20898, 37084, -65808, 116775, -207212, 367696, -652478, 1157815, -2054524, 3645730, -6469316, 11479734, -20370656, 36147506, -64143372, 113821732, -201975429, 358403220, -635982680, 1128544452, -2002589998 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Invert transform of A081362. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: 1/(2 - Product_{k>=1} (1 - x^(2*k-1))). a(0) = 1; a(n) = Sum_{k=1..n} A081362(k)*a(n-k). From G. C. Greubel, Jan 24 2024: (Start) G.f.: 1/(2 - QPochhammer(x)/QPochhammer(x^2)}. G.f.: 1/(2 - x^(1/24)*eta(x)/eta(x^2)), where eta(x) is the Dedekind eta function. (End) MATHEMATICA nmax = 39; CoefficientList[Series[1/(2 - Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] PROG (Magma) m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(2 - (&*[1-x^(2*j-1): j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024 (SageMath) m=80; def f(x): return 1/( 2 - product(1-x^(2*j-1) for j in range(1, m+3)) ) def A307060_list(prec): P. = PowerSeriesRing(QQ, prec) return P( f(x) ).list() A307060_list(m) # G. C. Greubel, Jan 24 2024 CROSSREFS Cf. A081362, A299208, A304969, A307058. Cf. A307057, A307058, A307059, A307062, A307063. Sequence in context: A307543 A255062 A307058 * A218600 A000709 A054161 Adjacent sequences: A307057 A307058 A307059 * A307061 A307062 A307063 KEYWORD sign AUTHOR Ilya Gutkovskiy, Mar 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 09:08 EDT 2024. Contains 375035 sequences. (Running on oeis4.)