The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307058 Expansion of 1/(2 - Product_{k>=1} (1 + x^(2*k-1))). 7
 1, 1, 1, 2, 4, 7, 12, 21, 38, 68, 120, 212, 377, 670, 1188, 2107, 3740, 6638, 11778, 20898, 37084, 65808, 116775, 207212, 367696, 652478, 1157815, 2054524, 3645730, 6469316, 11479734, 20370656, 36147506, 64143372, 113821732, 201975429, 358403220, 635982680, 1128544452, 2002589998 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Invert transform of A000700. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..2000 FORMULA a(0) = 1; a(n) = Sum_{k=1..n} A000700(k)*a(n-k). From G. C. Greubel, Jan 24 2024: (Start) G.f.: (1+x)/(2*(1+x) - x*QPochhammer(-1/x; x^2)). G.f.: 1/( 2 - x^(1/24)*etx(x^2)^2/(eta(x^4)*eta(x)) ), where eta(x) is the Dedekind eta function. (End) MAPLE g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i)*g(i), i=1..n)) end: seq(a(n), n=0..39); # Alois P. Heinz, Feb 09 2021 MATHEMATICA nmax = 39; CoefficientList[Series[1/(2 - Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x] PROG (Magma) m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(2 - (&*[1 + x^(2*j-1): j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024 (SageMath) m=80; def f(x): return 1/(2 - product(1+x^(2*j-1) for j in range(1, m+3))) def A307058_list(prec): P. = PowerSeriesRing(QQ, prec) return P( f(x) ).list() A307058_list(m) # G. C. Greubel, Jan 24 2024 CROSSREFS Cf. A000700, A055887, A302017, A304969, A307059. Row sums of A341279. Sequence in context: A103197 A307543 A255062 * A307060 A218600 A000709 Adjacent sequences: A307055 A307056 A307057 * A307059 A307060 A307061 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Mar 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 12:32 EDT 2024. Contains 374893 sequences. (Running on oeis4.)