OFFSET
0,2
COMMENTS
Binomial transform of A000700.
FORMULA
G.f.: (1/(1 - x)) * Product_{k>=1} (1 + x^(2*k-1)/(1 - x)^(2*k-1)).
a(n) = Sum_{k=0..n} binomial(n,k)*A000700(k).
a(n) ~ 2^(n-1) * exp(Pi*sqrt(n/3)/2 + Pi^2/96) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 01 2019
MAPLE
a:=series((1/(1-x))*mul(1/(1+(-x)^k/(1-x)^k), k=1..100), x=0, 33): seq(coeff(a, x, n), n=0..32); # Paolo P. Lava, Apr 03 2019
MATHEMATICA
nmax = 32; CoefficientList[Series[1/(1 - x) Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 01 2019
STATUS
approved