login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307264
Expansion of (1/(1 - x)) * Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k).
1
1, 2, 3, 5, 10, 22, 49, 107, 229, 486, 1035, 2225, 4825, 10508, 22875, 49624, 107154, 230356, 493471, 1054602, 2250850, 4801825, 10244940, 21865466, 46680201, 99659713, 212697816, 453634533, 966551216, 2057052465, 4372660927, 9284272791, 19692591418
OFFSET
0,2
COMMENTS
Binomial transform of A000700.
FORMULA
G.f.: (1/(1 - x)) * Product_{k>=1} (1 + x^(2*k-1)/(1 - x)^(2*k-1)).
a(n) = Sum_{k=0..n} binomial(n,k)*A000700(k).
a(n) ~ 2^(n-1) * exp(Pi*sqrt(n/3)/2 + Pi^2/96) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 01 2019
MAPLE
a:=series((1/(1-x))*mul(1/(1+(-x)^k/(1-x)^k), k=1..100), x=0, 33): seq(coeff(a, x, n), n=0..32); # Paolo P. Lava, Apr 03 2019
MATHEMATICA
nmax = 32; CoefficientList[Series[1/(1 - x) Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 01 2019
STATUS
approved