login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014844
a(n) = 2^n - n*(n-1)/2.
3
1, 2, 3, 5, 10, 22, 49, 107, 228, 476, 979, 1993, 4030, 8114, 16293, 32663, 65416, 130936, 261991, 524117, 1048386, 2096942, 4194073, 8388355, 16776940, 33554132, 67108539, 134217377, 268435078, 536870506, 1073741389, 2147483183
OFFSET
0,2
COMMENTS
a(n) is the number of subsets of {1,2,...,n} that do not have a cardinality of 2. - Geoffrey Critzer, Feb 25 2012
FORMULA
E.g.f.: exp(x)*(exp(x)-x^2/2!). - Geoffrey Critzer, Feb 25 2012
G.f.: (1-3*x+2*x^2+x^3)/((1-x)^3*(1-2*x)). - Colin Barker, Apr 01 2012
MATHEMATICA
nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x] (Exp[x] - x^2/2!), {x, 0, nn}], x] (* Geoffrey Critzer, Feb 25 2012 *)
CoefficientList[Series[(1-3*x+2*x^2+x^3)/((1-x)^3*(1-2*x)), {x, 0, 33}], x] (* Vincenzo Librandi, Apr 18 2012 *)
PROG
(Magma) [2^n - n*(n-1)/2: n in [0..40]]; // Vincenzo Librandi, Apr 18 2012
CROSSREFS
Sequence in context: A001646 A103595 A293842 * A307264 A329244 A173271
KEYWORD
nonn,easy
AUTHOR
STATUS
approved