The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264859 a(n) is the denominator of c(n), where c(n) is calculated from Product_{i>=1}(1-c(i)*x^i) = exp(-(x^2)/(1-x))*(1-x). 1
 1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 36, 1, 14, 15, 128, 1, 648, 1, 800, 21, 22, 1, 13824, 5, 26, 81, 6272, 1, 972000, 1, 32768, 33, 34, 35, 3359232, 1, 38, 39, 20480000, 1, 96018048, 1, 247808, 30375, 46, 1, 4586471424, 7, 500000, 51, 1384448, 1, 204073344, 55 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS c(1) = 1 and for n>1, c(n) satisfies Sum_{d|n} (1/d)*c(n/d)^d = 1 + 1/n. c(p) = 1 for prime p and a(p) = 1 accordingly. LINKS Table of n, a(n) for n=1..55. MAPLE c := proc (n) option remember; 1+1/n-add(procname(n/d)^d/d, d = `minus`(numtheory:-divisors(n), {1})) end proc: c(1) := 1: a := denom(map(c, [`\$`(1 .. 100)])); MATHEMATICA nmax = 100; Remove[c]; Subscript[c, 1] = 1; Do[Subscript[c, k] = Subscript[c, k] /. (Flatten[Solve[SeriesCoefficient[E^(-x^2/(1 - x))*(1 - x), {x, 0, k}] == Coefficient[Expand[Product[1 - Subscript[c, i]*x^i, {i, 1, k}]], x^k], Subscript[c, k]]]), {k, 2, nmax}]; Table[Subscript[c, n], {n, 1, nmax}] // Denominator (* Vaclav Kotesovec, Dec 12 2015 *) PROG (PARI) lista(nn) = {vc = vector(nn); vc[1] = 1; for (n=2, nn, vc[n] = 1+1/n - sumdiv(n, d, if (d==1, 0, (vc[n/d]^d)/d)); print1(denominator(vc[n]), ", "); ); } \\ Michel Marcus, Nov 27 2015 CROSSREFS Cf. A259027 (numerators). Sequence in context: A324370 A324193 A364829 * A007956 A107754 A181569 Adjacent sequences: A264856 A264857 A264858 * A264860 A264861 A264862 KEYWORD nonn,frac AUTHOR Gevorg Hmayakyan, Nov 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 10:34 EDT 2024. Contains 372760 sequences. (Running on oeis4.)