login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030513
Numbers with 4 divisors.
40
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
OFFSET
1,1
COMMENTS
Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022
REFERENCES
Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.
FORMULA
{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009
MATHEMATICA
Select[Range[200], DivisorSigma[0, #]==4&] (* Harvey P. Dale, Apr 06 2011 *)
PROG
(PARI) is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
(Magma) [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
(Python)
from math import isqrt
from sympy import primepi, integer_nthroot, primerange
def A030513(n):
def f(x): return int(n+x-primepi(integer_nthroot(x, 3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 16 2024
CROSSREFS
Equals the disjoint union of A006881 and A030078.
Sequence in context: A291127 A211337 A007422 * A161918 A294729 A242270
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010
STATUS
approved