|
|
A161918
|
|
Numbers n such that the sum of the divisors minus the sum of the prime factors (counted with multiplicity) is equal to n+1.
|
|
4
|
|
|
6, 8, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
n=21: Sum_divisors (1,3,7,21) = 32; Sum_prime_factors (3,7) = 10 -> 32-10 = 22. n=55: Sum_divisors (1,5,11,55) = 72; Sum_prime_factors (5,11) = 16 -> 72-16 = 56.
|
|
MAPLE
|
with(numtheory); P:=proc(i) local b, c, j, s, n; for n from 2 by 1 to i do b:=(convert(ifactors(n), `+`)-1); c:=nops(b); j:=0; s:=0; for j from c by -1 to 1 do s:=s+convert(b[j], `*`); od; if n=sigma(n)-s-1 then print(n); fi; od; end: P(500);
|
|
MATHEMATICA
|
Select[Range[203], DivisorSigma[1, #] - Total[Times @@@ FactorInteger[#]] == # + 1 &] (* Jayanta Basu, Aug 11 2013 *)
|
|
PROG
|
isA161918(n)={ n+1 == sigma(n)-(n=factor(n))[, 1]~*n[, 2] }
for(n=1, 500, isA161918(n)&print1(n", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|