login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161917
Numbers n for which the sum of their prime factors (with repetition) divides the sum of their divisors.
5
12, 15, 35, 42, 60, 63, 66, 68, 84, 90, 95, 110, 114, 119, 140, 143, 152, 168, 189, 195, 204, 209, 216, 234, 245, 258, 264, 270, 280, 287, 290, 294, 297, 319, 322, 323, 352, 368, 377, 380, 384, 396, 470, 476, 480, 506, 510, 527, 531, 544, 552, 558, 559, 572
OFFSET
1,1
LINKS
FORMULA
{n: A001414(n) | A000203(n)}. - R. J. Mathar, Jun 26 2009
EXAMPLE
n=12: Sum_divisors (1,2,3,4,6,12) = 28; Sum_prime_factors (2,2,3) =7 -> 28/7 = 4. n=319: Sum_divisors (1,11,29,319) = 360; Sum_prime_factors (11,29) =40 -> 360/40 = 9.
MAPLE
with(numtheory); P:=proc(q) local a, n;
for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2];
if type(sigma(n)/add(a[k][1]*a[k][2], k=1..nops(a)), integer) then print(n);
fi; fi; od; end: P(10^4);
MATHEMATICA
Select[Range[2, 600], Divisible[DivisorSigma[1, #], Total[ Times@@@ FactorInteger[#]]]&] (* Harvey P. Dale, Dec 09 2010 *)
CROSSREFS
Sequence in context: A194234 A296796 A376430 * A065150 A365850 A277082
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Offset corrected by R. J. Mathar, Jun 26 2009
STATUS
approved