

A161914


Gaps between the nontrivial zeros of Riemann zeta function, rounded to nearest integers, with a(1)=14.


9



14, 7, 4, 5, 3, 5, 3, 2, 5, 2, 3, 3, 3, 1, 4, 2, 2, 3, 4, 1, 2, 4, 2, 3, 1, 4, 2, 1, 3, 2, 2, 2, 2, 4, 1, 2, 2, 3, 3, 2, 1, 3, 2, 2, 2, 1, 3, 2, 1, 2, 3, 1, 3, 1, 2, 3, 1, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 1, 3, 1, 2, 1, 3, 2, 2, 2, 1, 2, 3, 2, 1, 3, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

We consider here the imaginary part of 1/2 + iy = z, for which Zeta(z) is a zero.
Note that these are not the first differences of A002410 because rounding is done here AFTER computing the differences.  R. J. Mathar, Jul 04 2009
What is the largest n such that a(n) > 0?  Charles R Greathouse IV, Jan 08 2012
This doesn't seem feasible to compute, probably more than 10^200.  Charles R Greathouse IV, Jan 29 2013


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
A. M. Odlyzko, Tables of zeros of the Riemann zeta function
A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function
Index entries for zeta function


EXAMPLE

The absolute difference between the first nontrivial zero (14.134725...) and the second nontrivial zero (21.022039...) is equal to 6.887314... which rounded to nearest integer is equal to 7, then a(2) = 7.


MATHEMATICA

Join[{14}, Table[Round[Im[ZetaZero[n]  ZetaZero[n  1]]], {n, 2, 100}]] (* Alonso del Arte, Jan 29 2013 *)


CROSSREFS

Cf. A002410, A162774, A162780A162782, A208436, A210447, A221974.
Sequence in context: A048932 A329022 A033334 * A162774 A254873 A004479
Adjacent sequences: A161911 A161912 A161913 * A161915 A161916 A161917


KEYWORD

nonn


AUTHOR

Omar E. Pol, Jun 26 2009


EXTENSIONS

Extended by R. J. Mathar, Jul 04 2009


STATUS

approved



