Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Oct 15 2016 15:03:56
%S 1,511,713,11023,15553,43873,81079,323593,27923663,125093857,
%T 466572127,1108378657,2214217703,2871002911,3501195817,4107455887,
%U 4609840831,5066719081,5488711231,6331291231,9396536737
%N Numbers n such that 2^(sigma(n)-n) == 1 (mod n).
%C Terms are 1, 7*73, 23*31, 73*151, 103*151, 73*601, 89*911, 151*2143, ...
%C Obviously, there are no primes in this sequence and there are no squares of primes. n=p*q is in the sequence iff 2^(q+2) == 1 mod p and 2^(p+2) == 1 mod q. - _Robert Israel_, Sep 23 2016
%H Charles R Greathouse IV, <a href="/A277172/b277172.txt">Table of n, a(n) for n = 1..32</a>
%e 511 is a term because 2^(sigma(511)-511) == 1 (mod 511).
%o (PARI) is(n) = Mod(2, n)^(sigma(n)-n)==1;
%o (PARI) list(lim)=my(v=List([1]),t,s,n); lim\=1; forprime(p=3,sqrtint(lim\3), for(e=2,logint(lim,p), t=p^e; forstep(k=3,lim\t,2, if(k%p==0, next); s=(t*p-1)/(p-1)*sigma(k); n=t*k; if(Mod(2,n)^(s-n)==1, listput(v,n))))); forprime(p=3,lim\3, forstep(k=3,lim\p,2, if(k%p==0, next); s=(p+1)*sigma(k); n=p*k; if(Mod(2,n)^(s-n)==1, listput(v,n)))); Set(v) \\ _Charles R Greathouse IV_, Oct 04 2016
%Y Cf. A000203, A001065.
%K nonn
%O 1,2
%A _Altug Alkan_, Oct 03 2016
%E a(11)-a(21) from _Charles R Greathouse IV_, Oct 07 2016