login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential convolution of Catalan numbers and factorial numbers.
3

%I #18 Dec 21 2020 07:16:29

%S 1,2,6,23,106,572,3564,25377,204446,1844876,18465556,203179902,

%T 2438366836,31699511768,443795839192,6656947282725,106511191881270,

%U 1810690391626380,32592427526913540,619256124778620450,12385122502136529420,260087572569333384840

%N Exponential convolution of Catalan numbers and factorial numbers.

%C a(n) = number of permutations of [n+1] in which the first entry does not start a (classical) 1234 pattern. The number of such permutations with first entry i is n!/(n + 1 - i)! C(n + 1 - i) where C(n) is the Catalan number A000108(n). - _David Callan_, Jun 12 2017

%H Alois P. Heinz, <a href="/A277176/b277176.txt">Table of n, a(n) for n = 0..449</a>

%F E.g.f.: exp(2*x)/(1-x)*(BesselI(0,2*x)-BesselI(1,2*x)).

%F a(n) = Sum_{i=0..n} binomial(n,i) * C(i) * (n-i)!.

%F a(n) ~ exp(2) * BesselI(2,2) * n!. - _Vaclav Kotesovec_, Oct 13 2016

%p a:= proc(n) option remember; `if`(n<2, n+1,

%p ((n^2+5*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n+1))

%p end:

%p seq(a(n), n=0..30);

%t a[n_] := Sum[Binomial[n, i] CatalanNumber[i] (n-i)!, {i, 0, n}];

%t a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 21 2020 *)

%Y Cf. A000108, A000142, A277175, A277359.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Oct 02 2016