login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277761
Number of n X 2 0..2 arrays with every element equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0) both plus 1 mod 3 and minus 1 mod 3, with new values introduced in order 0..2.
1
0, 1, 2, 14, 56, 284, 1304, 6248, 29408, 139472, 659360, 3121376, 14768000, 69887936, 330703232, 1564924544, 7405262336, 35042157824, 165821110784, 784674242048, 3713117739008, 17570663078912, 83145267845120, 393447636985856
OFFSET
1,3
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 6*a(n-2) - 12*a(n-3).
Conjectures from Colin Barker, Feb 05 2019: (Start)
G.f.: x^2*(1 - 2*x) / ((1 + 2*x)*(1 - 6*x + 6*x^2)).
a(n) = (3*(-1)^n*2^(2+n) - (-5+sqrt(3))*(3+sqrt(3))^n + (3-sqrt(3))^n*(5+sqrt(3))) / 132.
(End)
EXAMPLE
Some solutions for n=4:
..0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..1
..2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2. .2..2
..2..0. .0..1. .1..2. .0..1. .1..0. .0..1. .0..1. .2..1. .1..0. .1..0
..1..1. .2..2. .0..0. .2..0. .0..2. .1..2. .2..1. .0..0. .1..2. .2..2
CROSSREFS
Column 2 of A277767.
Sequence in context: A356373 A137482 A346033 * A203576 A178605 A212895
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 29 2016
STATUS
approved