login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) equals the coefficient of x^n in (1 - log(1-x))^n! for n>=0.
1

%I #13 Oct 30 2016 08:39:37

%S 1,1,2,37,13921,207504608,193499235977786,16390183551007874514674,

%T 173238206541606827885872411575542,

%U 300679807333480520851459179939426369369129736,109110688416565628491410454990885244124132946665282604804584,10269686361506102165964632192322962717141565478713927846953403915348531319392,304583662721691547994723721287871614789227410136168948343531184046989057630321931742841867554016

%N a(n) equals the coefficient of x^n in (1 - log(1-x))^n! for n>=0.

%F a(n) = Sum_{k=0..n} binomial(n!,k) * k!/n! * (-1)^(n-k) * Stirling1(n,k).

%e Illustration of initial terms.

%e a(0) = 1;

%e a(1) = [x^1] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^1! = 1 ;

%e a(2) = [x^2] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^2!, or

%e a(2) = [x^2] (1 + 2*x + 2*x^2 + 5/3*x^3 + 17/12*x^4 +...) = 2 ;

%e a(3) = [x^3] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^3!, or

%e a(3) = [x^3] (1 + 6*x + 18*x^2 + 37*x^3 + 241/4*x^4 +...) = 37 ;

%e a(4) = [x^4] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^4!, or

%e a(4) = [x^4] (1 + 24*x + 288*x^2 + 2308*x^3 + 13921*x^4 +...) = 13921 ;

%e ...

%e a(n) = [x^n] (1 + x + x^2/2 + x^3/3 + x^4/4 +...+ x^k/k +...)^n! ;

%e ...

%e The coefficients of x^k, k=0..n, in (1 - log(1-x))^n! forms the triangle T(n,k):

%e [1];

%e [1, 1];

%e [1, 2, 2];

%e [1, 6, 18, 37];

%e [1, 24, 288, 2308, 13921];

%e [1, 120, 7200, 288020, 8642405, 207504608];

%e [1, 720, 259200, 62208120, 11197526430, 1612462485648, 193499235977786];

%e [1, 5040, 12700800, 21337344840, 26885057673810, 27100144537250736, 22764130374754974422, 16390183551007874514674];

%e [1, 40320, 812851200, 10924720134720, 110121179161192080, 888017192033323164288, 5967475567171901800336816, 34372659584069639646227206672, 173238206541606827885872411575542]; ...

%e in which the main diagonal forms this sequence: a(n) = T(n,n),

%e where

%e T(n,k) = Sum_{j=0..k} binomial(n!, j) * j!/k! * (-1)^(k-j) * Stirling1(k, j).

%o (PARI) {a(n) = polcoeff( (1 - log(1-x +x*O(x^n)))^n!, n)}

%o for(n=0,20,print1(a(n),", "))

%o (PARI) {a(n) = sum(k=0,n, binomial(n!,k) * k!/n! * (-1)^(n-k) * stirling(n,k,1) )}

%o for(n=0,20,print1(a(n),", "))

%o (PARI) {T(n,k) = sum(j=0,k, binomial(n!, j) * j!/k! * (-1)^(k-j) * stirling(k, j, 1) )}

%o for(n=0,20,print1(T(n,n),", "))

%Y Cf. A277759.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 28 2016