OFFSET
1,2
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..100
FORMULA
From Vaclav Kotesovec, Apr 16 2018: (Start)
a(n) = Gamma(n) * Gamma(n + 5/3) * 3^(n + 1) / (5 * Gamma(2/3) * 2^n).
a(n) ~ Gamma(1/3) * 3^(n + 3/2) * n^(2*n + 2/3) / (5 * 2^n * exp(2*n)).
(End)
a(n + 1) = A115067(n + 1) * a(n) = a(n) * n*(3*n + 5)/2. - David A. Corneth, Apr 16 2018
EXAMPLE
The 7 X 7 matrix (as below) has determinant 108385200.
1 1 1 1 1 1 1
1 5 1 1 1 1 1
1 1 12 1 1 1 1
1 1 1 22 1 1 1
1 1 1 1 35 1 1
1 1 1 1 1 51 1
1 1 1 1 1 1 70
MAPLE
d:=(i, j)->`if`(i<>j, 1, i*(3*i-1)/2):
seq(LinearAlgebra[Determinant](Matrix(n, d)), n=1..17);
MATHEMATICA
Table[FullSimplify[Gamma[n] * Gamma[n + 5/3] * 3^(n + 1) / (5 * Gamma[2/3] * 2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
Module[{nn=20, pn5}, pn5=PolygonalNumber[5, Range[nn]]; Table[Det[DiagonalMatrix[Take[pn5, n]]/.(0->1)], {n, nn}]] (* Harvey P. Dale, Feb 07 2025 *)
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(3*i-1)/2))); \\ Michel Marcus, Apr 16 2018
(PARI) first(n) = my(res = vector(n)); res[1] = 1; for(i = 1, n - 1, res[i + 1] = res[i] * i*(3*i + 5)/2); res \\ David A. Corneth, Apr 16 2018
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Muniru A Asiru, Apr 15 2018
STATUS
approved