OFFSET
0,3
COMMENTS
Number of linear extensions of garland or double fence poset. - Alexander Shashkov, Jul 26 2020
LINKS
Alexander Shashkov, Table of n, a(n) for n = 0..227 (terms 0..23 from Alois P. Heinz)
Oscar J. Borenstein and Alexander Shashkov, Garland Recurrences, arXiv:1909.04215 [math.CO], 2019.
Jiaxi Lu and Yuanzhe Ding, A skeleton model to enumerate standard puzzle sequences, arXiv:2106.09471 [math.CO], 2021.
FORMULA
a(n) ~ c * d^n * n^(2*n + 1/2), where d = 0.197278552664313325820060688708960349... and c = 4.4668518532326348084863454883501... - Vaclav Kotesovec, Dec 25 2018
EXAMPLE
a(2) = 2^2 = 4:
.
(1,2) (0,1)
/ \ / \
(2,2) (1,1) (0,0)
\ / \ /
(2,1) (1,0)
.
a(3) = 44:
.
(1,2,2)-(1,1,2)-(0,1,2)-(0,1,1)-(0,0,1)
/ X \ / X \
(2,2,2)-(2,1,2) (1,2,1)-(1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
\ X / \ X /
(2,2,1)-(2,1,1)-(2,1,0)-(1,1,0)-(1,0,0)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 19 2013
STATUS
approved