login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302913
Determinant of n X n matrix whose main diagonal consists of the first n 9-gonal numbers and all other elements are 1's.
5
1, 8, 184, 8280, 612720, 67399200, 10312077600, 2093351752800, 544271455728000, 176343951655872000, 69655860904069440000, 32947222207624845120000, 18384549991854663576960000, 11949957494705531325024000000, 8950518163534442962442976000000
OFFSET
1,2
FORMULA
From Vaclav Kotesovec, Apr 16 2018: (Start)
a(n) = 7^(n+1) * Gamma(n) * Gamma(n + 9/7) / (9 * Gamma(2/7) * 2^n).
a(n) ~ Pi * 7^(n+1) * n^(2*n + 2/7) / (9 * Gamma(2/7) * 2^(n-1) * exp(2*n)).
a(n+1) = a(n) * n*(7*n + 9)/2.
(End)
EXAMPLE
The matrix begins:
1 1 1 1 1 1 1 ...
1 9 1 1 1 1 1 ...
1 1 24 1 1 1 1 ...
1 1 1 46 1 1 1 ...
1 1 1 1 75 1 1 ...
1 1 1 1 1 111 1 ...
1 1 1 1 1 1 154 ...
MAPLE
d:=(i, j)->`if`(i<>j, 1, i*(7*i-5)/2):
seq(LinearAlgebra[Determinant](Matrix(n, d)), n=1..16);
MATHEMATICA
nmax = 20; Table[Det[Table[If[i == j, i*(7*i-5)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(7*n + 9)/2, a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[7^(n + 1) * Gamma[n] * Gamma[n + 9/7] / (9*Gamma[2/7]*2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(7*i-5)/2))); \\ Michel Marcus, Apr 16 2018
CROSSREFS
Cf. A001106 (nonagonal numbers).
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's: A000142 (k=2), A067550 (k=3), A010791 (k=4, with offset 1), A302909 (k=5), A302910 (k=6), A302911 (k=7), A302912 (k=8), this sequence (k=9), A302914 (k=10).
Sequence in context: A024286 A231795 A240319 * A049034 A092546 A227584
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Apr 15 2018
STATUS
approved