The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302914 Determinant of n X n matrix whose main diagonal consists of the first n 10-gonal numbers and all other elements are 1's. 5
 1, 9, 234, 11934, 1002456, 125307000, 21803418000, 5036589558000, 1490830509168000, 550116457882992000, 247552406047346400000, 133430746859519709600000, 84861955002654535305600000, 62882708656967010661449600000, 53701833193049827104877958400000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Vaclav Kotesovec, Apr 16 2018: (Start) In general, for k > 2, these determinants for k-gonal numbers satisfies: a(n,k) = ((k-2)/2)^(n-1) * Gamma(n) * Gamma(n + k/(k-2)) / Gamma(1 + k/(k-2)). a(n,k) ~ 4*Pi * (k/2 - 1)^n * n^(2*n + 2/(k-2)) / (k * Gamma(k/(k-2)) * exp(2*n)). a(n+1,k) = a(n,k) * n*((k-2)*n + k)/2. (End) LINKS Table of n, a(n) for n=1..15. FORMULA From Vaclav Kotesovec, Apr 16 2018: (Start) a(n) = 4^(n+1) * Gamma(n) * Gamma(n + 5/4) / (5*Gamma(1/4)). a(n) ~ Pi * 2^(2*n + 3) * n^(2*n + 1/4) / (5 * Gamma(1/4) * exp(2*n)). a(n+1) = a(n) * n*(4*n + 5). (End) EXAMPLE The matrix begins: 1 1 1 1 1 1 1 ... 1 10 1 1 1 1 1 ... 1 1 27 1 1 1 1 ... 1 1 1 52 1 1 1 ... 1 1 1 1 85 1 1 ... 1 1 1 1 1 126 1 ... 1 1 1 1 1 1 175 ... MAPLE d:=(i, j)->`if`(i<>j, 1, i*(4*i-3)): seq(LinearAlgebra[Determinant](Matrix(n, d)), n=1..16); MATHEMATICA nmax = 20; Table[Det[Table[If[i == j, i*(4*i-3), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *) RecurrenceTable[{a[n+1] == a[n] * n*(4*n + 5), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *) Table[FullSimplify[4^(n+1) * Gamma[n] * Gamma[n + 5/4] / (5*Gamma[1/4])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *) PROG (PARI) a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(4*i-3)))); \\ Michel Marcus, Apr 16 2018 CROSSREFS Cf. A001107. Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's: A000142 (k=2), A067550 (k=3), A010791 (k=4, with offset 1), A302909 (k=5), A302910 (k=6), A302911 (k=7), A302912 (k=8), A302913 (k=9), this sequence (k=10). Cf. A007840 (permanent instead of determinant, for k=2). Sequence in context: A153223 A276536 A288683 * A157569 A279492 A297747 Adjacent sequences: A302911 A302912 A302913 * A302915 A302916 A302917 KEYWORD nonn AUTHOR Muniru A Asiru, Apr 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 05:20 EDT 2024. Contains 372742 sequences. (Running on oeis4.)