OFFSET
1,1
COMMENTS
The primes and fortunate numbers in the partial sum of the fortunate numbers (A005235): primes begin: 3, 1061, 1409, 1613, 2069, 6091; fortunate numbers in partial sum begin: 3, 1061, 1409, 1613, 6091, and these subsequences are not disjoint. [Jonathan Vos Post, Jan 27 2010]
FORMULA
Let F(n) := a(n)/A007504(n). Conjecture: as n tends to infinity F(n) tends to Pi/2 with Pi=3.14159......
MATHEMATICA
NextPrime[ n_Integer] := Block[{k}, k = n + 1; While[ !PrimeQ[ k ], k++ ]; k ]; Fortunate[ n_Integer] := Block[{p = Product[ Prime[i], {i, 1, n} ] + 1, q}, q = NextPrime[p]; q - p + 1 ]; t = Table[ Fortunate[ n ], {n, 1, 48}]; Table[Plus @@ Take[t, n], {n, 48}] (* Robert G. Wilson v, Sep 04 2004 *)
Accumulate[NextPrime[#]-#+1&/@(Rest[FoldList[Times, 1, Prime[Range[ 60]]]]+ 1)] (* Harvey P. Dale, May 27 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Aug 29 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 04 2004
STATUS
approved