login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233585
Coefficients of the generalized continued fraction expansion of the inverse of Euler constant, 1/gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).
11
1, 1, 2, 2, 2, 2, 4, 12, 39, 71, 83, 484, 1028, 1447, 9913, 31542, 526880, 685669, 1396494, 1534902, 2295194, 9521643, 9643315, 42421746, 183962859, 553915624, 557976754, 6111180351, 10671513549, 61650520975, 106532505646
OFFSET
1,3
LINKS
S. Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
FORMULA
1/gamma = 1+1/(1+1/(2+2/(2+2/(2+2/(2+2/(4+4/(12+...))))))).
MATHEMATICA
BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[1/EulerGamma, 35] (* Robert G. Wilson v, May 22 2014 *)
BlazysExpansion[n_, mx_] := Reap[Nest[(1/(#/Sow[Floor[#]] - 1)) &, n, mx]; ][[-1, 1]]; BlazysExpansion[1/EulerGamma, 35] (* Jan Mangaldan, Jan 04 2017 *)
PROG
(PARI) bx(x, nmax)={local(c, v, k); // Blazys expansion function
v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
bx(1/Euler, 670) // Execution; use very high real precision
CROSSREFS
Cf. A233582.
Cf. A001620 (gamma).
Cf. Blazys's expansions: A233582 (Pi), A233583(e), A233584 (sqrt(e)), A233586 (2*gamma), A233587 and Blazys's continued fractions: A233588, A233589, A233590, A233591.
Sequence in context: A045948 A278110 A248763 * A103512 A130086 A337228
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Jan 06 2014
STATUS
approved