Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 04 2017 12:29:05
%S 1,1,2,2,2,2,4,12,39,71,83,484,1028,1447,9913,31542,526880,685669,
%T 1396494,1534902,2295194,9521643,9643315,42421746,183962859,553915624,
%U 557976754,6111180351,10671513549,61650520975,106532505646
%N Coefficients of the generalized continued fraction expansion of the inverse of Euler constant, 1/gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).
%H Stanislav Sykora, <a href="/A233585/b233585.txt">Table of n, a(n) for n = 1..670</a>
%H S. Sykora, <a href="http://dx.doi.org/10.3247/sl4math13.001">Blazys' Expansions and Continued Fractions</a>, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
%H S. Sykora, <a href="http://oeis.org/wiki/File:BlazysExpansions.txt">PARI/GP scripts for Blazys expansions and fractions</a>, OEIS Wiki
%F 1/gamma = 1+1/(1+1/(2+2/(2+2/(2+2/(2+2/(4+4/(12+...))))))).
%t BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[1/EulerGamma, 35] (* _Robert G. Wilson v_, May 22 2014 *)
%t BlazysExpansion[n_, mx_] := Reap[Nest[(1/(#/Sow[Floor[#]] - 1)) &, n, mx];][[-1, 1]]; BlazysExpansion[1/EulerGamma, 35] (* _Jan Mangaldan_, Jan 04 2017 *)
%o (PARI) bx(x, nmax)={local(c, v, k); // Blazys expansion function
%o v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
%o bx(1/Euler, 670) // Execution; use very high real precision
%Y Cf. A233582.
%Y Cf. A001620 (gamma).
%Y Cf. Blazys's expansions: A233582 (Pi), A233583(e), A233584 (sqrt(e)), A233586 (2*gamma), A233587 and Blazys's continued fractions: A233588, A233589, A233590, A233591.
%K nonn
%O 1,3
%A _Stanislav Sykora_, Jan 06 2014