login
A233591
Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=i^2.
10
1, 2, 2, 6, 2, 8, 4, 0, 2, 4, 1, 8, 2, 6, 9, 0, 2, 7, 4, 8, 1, 4, 9, 3, 7, 1, 0, 0, 8, 6, 2, 2, 4, 0, 3, 9, 6, 1, 9, 0, 8, 1, 1, 4, 8, 7, 3, 5, 3, 6, 2, 3, 5, 9, 5, 5, 0, 1, 6, 6, 6, 5, 2, 2, 1, 2, 5, 2, 7, 5, 4, 3
OFFSET
1,2
COMMENTS
For more details on this type of continued fractions, see A233588.
This one corresponds to the squares of natural numbers.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..20000 [a(322) onward corrected by Kevin Ryde, Oct 28 2024]
Stanislav Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
FORMULA
Equals 1+1/(4+4/(9+9/(16+16/(25+25/(36+...))))).
EXAMPLE
1.22628402418269027481493710086224039619081148735362359550166652...
MATHEMATICA
RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Range[45]^2], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
PROG
(PARI) See the link
CROSSREFS
Cf. A000290 (n^2).
Cf. Blazys' continued fractions: A233588, A233589, A233591 and Blazys' expansions: A233582, A233583, A233584, A233585, A233586, A233587.
Sequence in context: A028330 A293524 A363831 * A071052 A305984 A193388
KEYWORD
cons,nonn
AUTHOR
Stanislav Sykora, Jan 06 2014
STATUS
approved