The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155947 A triangle of polynomial coefficients: q(x,n)=(1 - x)^(n + 1)*Sum[(k + n)^n*x^k, {k, 0, Infinity}]; p(x,n)=q(x,n)+x^n*q(1/x,n). 0
 1, 1, 2, 5, -6, 5, 19, -13, -13, 19, 337, -1044, 1462, -1044, 337, 2101, -5073, 3092, 3092, -5073, 2101, 62281, -314222, 718559, -931796, 718559, -314222, 62281, 543607, -2329829, 3835365, -2044103, -2044103, 3835365, -2329829, 543607 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Row sums are:2*n! {2, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600,...}. The result is related to the Eulerian numbers infinite sum form. This was the result of finding the infinite sum identity: Sum[Binomial[k+n,n]*x^k,{k,0,Infinity}]=1/(1-x)^(n+1). LINKS FORMULA q(x,n)=(1 - x)^(n + 1)*Sum[(k + n)^n*x^k, {k, 0, Infinity}]; q(x,n)=(1 - x)^(n + 1)*LerchPhi[x, -n, n]; p(x,n)=q(x,n)+x^n*q(1/x,n); t(n,m)=coefficients(p(x,n)) EXAMPLE {1, 1}, {2}, {5, -6, 5}, {19, -13, -13, 19}, {337, -1044, 1462, -1044, 337}, {2101, -5073, 3092, 3092, -5073, 2101}, {62281, -314222, 718559, -931796, 718559, -314222, 62281}, {543607, -2329829, 3835365, -2044103, -2044103, 3835365, -2329829, 543607}, {22542017, -158151816, 509366204, -972472504, 1197512838, -972472504, 509366204, -158151816, 22542017}, {253202761, -1572381217, 4145530310, -5521116358, 2695127384, 2695127384, -5521116358, 4145530310, -1572381217, 253202761}, {13486784401, -121343461986, 506850150853, -1285984548968, 2186943445546, -2599897482092, 2186943445546, -1285984548968, 506850150853, -121343461986, 13486784401} MATHEMATICA Clear[p, x, n, m]; p[x_, n_] = (1 - x)^(n + 1)*Sum[(k + n)^n*x^k, {k, 0, Infinity}]; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x] + Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A161017 A198231 A272207 * A008294 A019694 A233588 Adjacent sequences:  A155944 A155945 A155946 * A155948 A155949 A155950 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Jan 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 13:47 EST 2021. Contains 349420 sequences. (Running on oeis4.)