login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155947 A triangle of polynomial coefficients: q(x,n)=(1 - x)^(n + 1)*Sum[(k + n)^n*x^k, {k, 0, Infinity}]; p(x,n)=q(x,n)+x^n*q(1/x,n). 0
1, 1, 2, 5, -6, 5, 19, -13, -13, 19, 337, -1044, 1462, -1044, 337, 2101, -5073, 3092, 3092, -5073, 2101, 62281, -314222, 718559, -931796, 718559, -314222, 62281, 543607, -2329829, 3835365, -2044103, -2044103, 3835365, -2329829, 543607 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums are:2*n!

{2, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600,...}.

The result is related to the Eulerian numbers infinite sum form.

This was the result of finding the infinite sum identity:

Sum[Binomial[k+n,n]*x^k,{k,0,Infinity}]=1/(1-x)^(n+1).

LINKS

Table of n, a(n) for n=0..35.

FORMULA

q(x,n)=(1 - x)^(n + 1)*Sum[(k + n)^n*x^k, {k, 0, Infinity}];

q(x,n)=(1 - x)^(n + 1)*LerchPhi[x, -n, n];

p(x,n)=q(x,n)+x^n*q(1/x,n);

t(n,m)=coefficients(p(x,n))

EXAMPLE

{1, 1},

{2},

{5, -6, 5},

{19, -13, -13, 19},

{337, -1044, 1462, -1044, 337},

{2101, -5073, 3092, 3092, -5073, 2101},

{62281, -314222, 718559, -931796, 718559, -314222, 62281},

{543607, -2329829, 3835365, -2044103, -2044103, 3835365, -2329829, 543607},

{22542017, -158151816, 509366204, -972472504, 1197512838, -972472504, 509366204, -158151816, 22542017},

{253202761, -1572381217, 4145530310, -5521116358, 2695127384, 2695127384, -5521116358, 4145530310, -1572381217, 253202761},

{13486784401, -121343461986, 506850150853, -1285984548968, 2186943445546, -2599897482092, 2186943445546, -1285984548968, 506850150853, -121343461986, 13486784401}

MATHEMATICA

Clear[p, x, n, m];

p[x_, n_] = (1 - x)^(n + 1)*Sum[(k + n)^n*x^k, {k, 0, Infinity}];

Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];

Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]

+ Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A161017 A198231 A272207 * A008294 A019694 A233588

Adjacent sequences:  A155944 A155945 A155946 * A155948 A155949 A155950

KEYWORD

sign,tabl,uned

AUTHOR

Roger L. Bagula, Jan 31 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 13:47 EST 2021. Contains 349420 sequences. (Running on oeis4.)