The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155948 A triangle of polynomial coefficients: q(x,n)=(-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(2*m + 1)^n*x^ m, {m, 0, Infinity}]/(x^n); p(x,n)=q(x,n)+x^n*q(1/x,n). 0
 2, 6, 6, 34, 206, 206, 34, 370, 4840, 14950, 14950, 4840, 370, 6642, 142644, 792216, 1719618, 1719618, 792216, 142644, 6642, 161294, 5282074, 45682504, 158295424, 274902544, 274902544, 158295424, 45682504, 5282074, 161294, 4827538 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are: {2, 12, 480, 40320, 5322240, 968647680, 225833287680, 64362486988800, 21711612277555200, 8467528788246528000, 3750345477848825856000,...}. LINKS FORMULA q(x,n)=(-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(2*m + 1)^n*x^ m, {m, 0, Infinity}]/(x^n); p(x,n)=q(x,n)+x^n*q(1/x,n); t(n,m)=coefficients(p(x,n)) EXAMPLE {2}, {6, 6}, {34, 206, 206, 34}, {370, 4840, 14950, 14950, 4840, 370}, {6642, 142644, 792216, 1719618, 1719618, 792216, 142644, 6642}, {161294, 5282074, 45682504, 158295424, 274902544, 274902544, 158295424, 45682504, 5282074, 161294}, {4827538, 227651778, 2907137246, 14984780406, 38115062856, 56677184016, 56677184016, 38115062856, 14984780406, 2907137246, 227651778, 4827538}, {170861562, 11016050364, 197554369086, 1459983311028, 5313520312650, 10834039248120, 14364959341590, 14364959341590, 10834039248120, 5313520312650, 1459983311028, 197554369086, 11016050364, 170861562}, {6975764002, 589883814920, 14194396260000, 144086584363300, 732524911117760, 2067582128226648, 3567123431959120, 4329697827271850, 4329697827271850, 3567123431959120, 2067582128226648, 732524911117760, 144086584363300, 14194396260000, 589883814920, 6975764002}, {322687717462, 34650253894894, 1078225225888096, 14442860573483848, 98895486888500764, 381079250530358380, 884703838750948216, 1338789895455044032, 1514739863757428308, 1514739863757428308, 1338789895455044032, 884703838750948216, 381079250530358380, 98895486888500764, 14442860573483848, 1078225225888096, 34650253894894, 322687717462}, {16679881037250, 2217074072477334, 86648480181566430, 1481836294429602306, 13190542163684355876, 67274063665962266004, 208944364733797179732, 415175601761715156180, 565159740290092550148, 603857707780596736740, 603857707780596736740, 565159740290092550148, 415175601761715156180, 208944364733797179732, 67274063665962266004, 13190542163684355876, 1481836294429602306, 86648480181566430, 2217074072477334, 16679881037250} MATHEMATICA Clear[p, x, n, m]; p[x_, n_] = (-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(2*m + 1)^n*x^ m, {m, 0, Infinity}]/(x^n); Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x] + Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A056603 A019198 A155164 * A228955 A328584 A226707 Adjacent sequences:  A155945 A155946 A155947 * A155949 A155950 A155951 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Jan 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)