login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155948
A triangle of polynomial coefficients: q(x,n)=(-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(2*m + 1)^n*x^ m, {m, 0, Infinity}]/(x^n); p(x,n)=q(x,n)+x^n*q(1/x,n).
0
2, 6, 6, 34, 206, 206, 34, 370, 4840, 14950, 14950, 4840, 370, 6642, 142644, 792216, 1719618, 1719618, 792216, 142644, 6642, 161294, 5282074, 45682504, 158295424, 274902544, 274902544, 158295424, 45682504, 5282074, 161294, 4827538
OFFSET
0,1
COMMENTS
Row sums are:
{2, 12, 480, 40320, 5322240, 968647680, 225833287680, 64362486988800,
21711612277555200, 8467528788246528000, 3750345477848825856000,...}.
FORMULA
q(x,n)=(-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(2*m + 1)^n*x^ m, {m, 0, Infinity}]/(x^n);
p(x,n)=q(x,n)+x^n*q(1/x,n);
t(n,m)=coefficients(p(x,n))
EXAMPLE
{2},
{6, 6},
{34, 206, 206, 34},
{370, 4840, 14950, 14950, 4840, 370},
{6642, 142644, 792216, 1719618, 1719618, 792216, 142644, 6642},
{161294, 5282074, 45682504, 158295424, 274902544, 274902544, 158295424, 45682504, 5282074, 161294},
{4827538, 227651778, 2907137246, 14984780406, 38115062856, 56677184016, 56677184016, 38115062856, 14984780406, 2907137246, 227651778, 4827538},
{170861562, 11016050364, 197554369086, 1459983311028, 5313520312650, 10834039248120, 14364959341590, 14364959341590, 10834039248120, 5313520312650, 1459983311028, 197554369086, 11016050364, 170861562},
{6975764002, 589883814920, 14194396260000, 144086584363300, 732524911117760, 2067582128226648, 3567123431959120, 4329697827271850, 4329697827271850, 3567123431959120, 2067582128226648, 732524911117760, 144086584363300, 14194396260000, 589883814920, 6975764002},
{322687717462, 34650253894894, 1078225225888096, 14442860573483848, 98895486888500764, 381079250530358380, 884703838750948216, 1338789895455044032, 1514739863757428308, 1514739863757428308, 1338789895455044032, 884703838750948216, 381079250530358380, 98895486888500764, 14442860573483848, 1078225225888096, 34650253894894, 322687717462},
{16679881037250, 2217074072477334, 86648480181566430, 1481836294429602306, 13190542163684355876, 67274063665962266004, 208944364733797179732, 415175601761715156180, 565159740290092550148, 603857707780596736740, 603857707780596736740, 565159740290092550148, 415175601761715156180, 208944364733797179732, 67274063665962266004, 13190542163684355876, 1481836294429602306, 86648480181566430, 2217074072477334, 16679881037250}
MATHEMATICA
Clear[p, x, n, m];
p[x_, n_] = (-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(2*m + 1)^n*x^ m, {m, 0, Infinity}]/(x^n);
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]
+ Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A056603 A019198 A155164 * A368393 A228955 A328584
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Jan 31 2009
STATUS
approved