login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155950
A triangle of polynomial coefficients: q(x,n)=(1 - x)^(n + 1)*Sum[(2*k + n)^n*x^k, {k, 0, Infinity}]; p(x,n)=q(x,n)+x^n*q(1/x,n).
0
1, 1, 2, 2, 8, 8, 26, 22, 22, 26, 272, -64, 352, -64, 272, 2882, -486, 1444, 1444, -486, 2882, 50752, -93056, 230336, -283904, 230336, -93056, 50752, 745418, -1182562, 2112618, -1030354, -1030354, 2112618, -1182562, 745418, 18456832, -66045952
OFFSET
0,3
COMMENTS
Row sums are:
{2, 4, 16, 96, 768, 7680, 92160, 1290240, 20643840, 371589120, 7431782400,...}.
FORMULA
q(x,n)=(1 - x)^(n + 1)*Sum[(2*k + n)^n*x^k, {k, 0, Infinity}];
p(x,n)=q(x,n)+x^n*q(1/x,n);
t(n,m)=coefficients(p(x,n))
EXAMPLE
{1, 1},
{2, 2},
{8, 8},
{26, 22, 22, 26},
{272, -64, 352, -64, 272},
{2882, -486, 1444, 1444, -486, 2882}, {50752, -93056, 230336, -283904, 230336, -93056, 50752},
{745418, -1182562, 2112618, -1030354, -1030354, 2112618, -1182562, 745418},
{18456832, -66045952, 193838080, -342063104, 412272128, -342063104, 193838080, -66045952, 18456832},
{347066882, -1114674254, 2662543720, -3229707896, 1520566108, 1520566108, -3229707896, 2662543720, -1114674254, 347066882},
{11073741824, -59833329664, 216555369472, -500687839232, 812895791104, -952575684608, 812895791104, -500687839232, 216555369472, -59833329664, 11073741824}
MATHEMATICA
Clear[p, x, n, m];
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + n)^n*x^k, {k, 0, Infinity}];
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]
+ Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A099328 A073090 A120544 * A162959 A354830 A158302
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Jan 31 2009
STATUS
approved